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Using average Hamiltonian (AH) theory, we analyze recently introduced homonuclear dipolar recoupling
pulse sequences for exciting central-transition double-quantum coherences (2QC) between half-integer
spin quadrupolar nuclei undergoing magic-angle-spinning. Several previously observed differences
among the recoupling schemes concerning their compensation to resonance offsets and radio-frequency
(rf) inhomogeneity may qualitatively be rationalized by an AH analysis up to third perturbation order,
despite its omission of first-order quadrupolar interactions. General aspects of the engineering of 2Q-
recoupling pulse sequences applicable to half-integer spins are discussed, emphasizing the improve-
ments offered from a diversity of supercycles providing enhanced suppression of undesirable AH
cross-terms between resonance offsets and rf amplitude errors.
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1. Introduction

Following the successful introduction of techniques for restor-
ing and utilizing homonuclear through-space dipolar interactions
among spin-1/2 nuclei under magic-angle-spinning (MAS) condi-
tions [1–3], increasing efforts have in recent years been made for
designing analogous dipolar recoupling tools for half-integer spin
quadrupolar nuclei [4–21]. To minimize losses of the central-tran-
sition (CT) signals, the first generation of homonuclear recoupling
techniques avoided application of radio-frequency (rf) pulses and
relied on the non-commutation between homonuclear couplings
and other anisotropic interactions, such as heteronuclear couplings
to 1H or first-order quadrupolar interactions [4–13]. The main
obstacle with such approaches is their dependence of the dipolar
recoupling on the particular spin system parameters and on the
choice of spinning frequency. Consequently, more recent progress
in this area has focussed on rf-driven homonuclear recoupling
methodology [14–20], as reviewed in Ref. [21].

The present work concerns double-quantum (2Q) recoupling,
which generates a two-spin double-quantum (2Q) dipolar Hamil-
tonian. Such options have been proposed for the purposes of either
driving magnetization transfers between the CT of the recoupled
half-integer spins [15,16], or for exciting two-spin CT double quan-
tum coherence (2QC) [17–20]. As will be examined further in this
ll rights reserved.
article, the latter category of dipolar recoupling schemes may be
viewed as supercycles of 2Q-HORROR irradiation [22] and general-
izations thereof [23,24], meaning that the rf amplitude matches
1/2 of the MAS frequency. Mali et al. developed this method further
and introduced it for half-integer spins [18]. Subsequent 2Q-recou-
pling options introduced by us [19,20] exploited symmetry-based
pulse sequences [3] that provided improved 2QC excitation perfor-
mance. Particularly, the R21

2R2�1
2 scheme of Ref. [19] has found sev-

eral applications, such as for establishing 2Q–1Q correlations [19],
estimating internuclear distances [25] and determining quadrupo-
lar tensor orientations [25,26]. Very recent modifications of this
pulse sequence have also been exploited for 2Q–1Q correlation
spectroscopy in the context of 1H NMR [27] and for half-integer
spins under double-rotation (DOR) conditions [28,29].

Several requirements apply for an ‘‘ideal” homonuclear dipolar
2Q-recoupling pulse sequence for half-integer quadrupolar spins:
(I) It should effect a pure CT 2Q Hamiltonian, which delivers as
high double-quantum filtering (2QF) efficiency as possible and is
(II) associated with a minimum spatial orientation-dependence.
Failure to meet this criterion leads to reduced double-quantum fil-
tering (2QF) efficiencies from powders due to destructive interfer-
ences between the 2QC amplitudes stemming from different
crystallites and determinations of geometry- and distance-related
spin-system parameters are hampered. Furthermore, the recou-
pling should be invariant to (III) spreads in resonance frequencies
among the spin sites, that may originate both from isotropic chem-
ical and second-order quadrupolar shifts; (IV) rf amplitude errors
and their fluctuations over the sample length (‘‘rf inhomogeneity”)
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and (V) the time-dependent first-order quadrupolar interaction. Fi-
nally, all this needs to be achieved by (VI) using the lowest possible
CT nutation frequency xCT

nut

� �
, so as to be CT-selective and mini-

mize signal losses due to the excitation of single-spin multiple-
quantum coherences [13,30,31]. Primarily, pulse sequences oper-
ating at the rotary resonance conditions xCT

nut ¼ nxr ðn ¼ 1;2; . . .Þ
must be avoided.

All requirements but (V) apply to all dipolar recoupling scenar-
ios, irrespective of the spin number S. However, while low-power rf
operation is desirable for recoupling spins-1/2 (particularly in or-
ganic solids), it is an absolute must for half-integer spins and has
major bearings on the pulse sequence engineering: A low spin
nutation frequency naturally leads to a strong resonance offset-
dependence of the dipolar recoupling. A more fundamental
problem, however, is the presence of first-order quadrupolar inter-
actions for S > 1=2: not only do they interfere with the recoupling,
but they also constitute a major hurdle for developing theoretical
analyses. The most commonly employed pulse-sequence design
framework of average Hamiltonian theory (AHT) is generally car-
ried out in an interaction-frame of the strongest NMR interaction
[32–37]. As opposed to the case of quadrupolar nuclei, the rf ampli-
tude may for spins-1/2 readily be arranged to dominate the size of
all other NMR interactions. In the absence of rf pulses, a first-order
quadrupolar interaction-frame have been employed to gain theo-
retical insight into quadrupolar-driven homonuclear dipolar
‘‘self-recoupling” processes [6,7,9,11–13]. However, the additional
presence of rf fields complicate such analyses severely and a rigor-
ous theory for the dynamics of dipolar-coupled quadrupolar spins
during a simultaneous application of rf pulses and MAS is hitherto
lacking.

The present paper seeks to rationalize the reasoning behind the
pulse design amounting in the recoupling techniques presented in
Refs. [18–20], as well as to compare their relative advantages and
limitations from a theoretical AHT standpoint, particularly their
(lack of) adherence to the requirements (I–V), and the resulting
compensation to rf inhomogeneity (IV) and dispersions in reso-
nance frequencies (III). To this end, an approximate spin-1/2-based
AHT formulation is employed, with focus on comparing the in-
creased robustness of the recoupling resulting form the use of
‘‘supercycles” to improve the suppression of undesirable higher-or-
der AH terms.

Extrapolating results from spin-1/2-oriented AHT analyses to
the case of the CT of half-integer quadrupolar spins should be exer-
cised with caution. Nevertheless, as shown in Refs. [18,19,25,29],
spin-1/2-based AHT predictions (that effectively ignore quadrupo-
lar interactions) are qualitatively correct in the following two as-
pects: (i) The symmetry-based recoupling/suppression of either
time-independent (e.g., isotropic chemical shifts) or ‘‘small” time-
dependent NMR interactions (such as homonuclear dipolar cou-
plings) are to first-order AHT representative also for quadrupolar
spins. (ii) For a given pulse sequence, the dipolar scaling factor
agrees with predictions made from spin-1/2-stemming theories.

This article is organized as follows: The next section introduces
the rf pulse sequences under examination and the experimental
protocol used for 2QC excitation, whereas Section 3 reviews some
notation used for the remaining of the paper. The details of the AHT
formalism employed is given in Appendix. Section 4 gives the pulse
sequence-design rationale [subject to the constraint (VI)] and com-
pares the 2Q-Hamiltonian forms on a common symmetry-based
interpretation with respect to criteria (I) and (II) above. The re-
sponse of the 2Q-recoupling schemes to variations in resonance
offsets and rf errors [criteria (III) and (IV)] are examined to third-
order AHT in Section 5. Section 6 compares the analytical predic-
tions with numerically calculated 2QF efficiencies offered by the
various recoupling schemes in the absence of quadrupolar
interactions.
In a forthcoming paper, we will present a comprehensive
numerical and experimental survey of half-integer spins subject
to quadrupolar interactions.

2. Homonuclear double-quantum recoupling sequences

The properties of many symmetry-based CNm
n and RNm

n-based
pulse schemes are discussed in Refs. [3,37–41]. Fig. 1(a–c) displays
explicit pulse-depictions of the recoupling sequences discussed in
this work. The nomenclature CNm

n and RNm
n implies that an integral

number N of cycles (C) or composite p-pulses (R) extends over n
rotational periods sr ¼ 2p=xr , where xr is the MAS frequency.
Phase-shifted basic C/R elements are concatenated such that the
overall phase /p added to all pulses in the pth C/R element is given
by /p ¼ 2pmp=N for CNm

n and ð�1Þppm=N for RNm
n schemes, with the

index running between p ¼ 0; 1; 2; ::N � 1 [3,37]. N must be even
for RNm

n sequences.
The integers N, n and the sum of flip angles btot of the basic ele-

ment together require that the spin nutation frequency obeys [3]

xnut ¼
Nbtotxr

2pn
: ð1Þ

For S ¼ 1=2, the spin nutation frequency xnut is identical to the rf
nutation frequency,

xRF
nut ¼ cSj jB1 ð2Þ

where B1 is the transverse magnetic field component and cS the spin
gyromagnetic ratio. For CT-selective rf irradiation of an half-integer
spin S, it should be arranged that the CT nutation frequency xCT

nut

� �
obeys Eq. (1). In general, xCT

nut depends on the quadrupolar
frequency

xQ ¼
pCQ

Sð2S� 1Þ ð3Þ

in a complicated manner, except in the following limits [13,30]:

xCT
nut ¼xRF

nut for x1 � xQ ðnon-selective irradiationÞ ð4Þ

¼ Sþ 1
2

� �
xRF

nut for x1 � xQ ðCT-selective irradiationÞ ð5Þ

CQ ¼ e2qQ=h is the quadrupolar coupling constant.
In this work, R either represents a p0-pulse or the composite

pulse (p=2Þ0ð3p=2Þp, whereas C is a multiple of a 2p pulse. The
present symmetry-numbers (N;n and m) implies that all recoupling
schemes (i) employs a spin-S CT nutation frequency related to the
MAS frequency as xCT

nut ¼ xr=2 and (ii) are ‘‘amplitude-modulated”,
meaning that the phases of two arbitrarily selected pulses are re-
lated to each other by /q ¼ /p þ Kp with K ¼ 0 or �1. It may be
verified from Fig. 1 that the present sequences are constructed
by concatenating rf pulses with phases p=2 or 3p=2. The CNm

n sym-
metries depicted in Fig. 1c convey different 2Q-HORROR imple-
mentations, as explained in Sections 4 and 5.

We primarily consider CNm
nCN�m

n ;RNm
n RN�m

n or R21
4½X
!
; X
 � super-

cycles. A phase inversion RNm
nRN�m

n scheme represents a concatena-
tion of two RNm

n and RN�m
n cycles [3,40,42], whereas R21

4½X
!
; X
 � is

based solely on R21
4 symmetry but employing a flip-angle permu-

tation within the R-elements such that X
!¼ ðp=2Þ0ð3p=2Þp and

X
 ¼ ð3p=2Þ0ðp=2Þp [20]. Note that R42

4 symmetry simply consti-
tutes two repeated R21

2 cycles and that R42
4R4�2

4 is identical to a
R21

2R21
2R2�1

2 R2�1
2 sequence [19]. We consider R42

4R4�2
4 as it has in

practice often turned out (somewhat surprisingly) to give better
2QC excitation than R21

2R2�1
2 [19,20].

‘‘MQ phase-cycling” represents another supercycling nesting le-
vel [35,40,42–46]. Here we only consider the special case of
‘‘M ¼ 2” cycles, denoted ðRNm

nRN�m
n Þ2

1 and corresponding to a con-
catenation of a phase-inversion supercycle with its counterpart
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Fig. 1. (a and b) Symmetry-based RNm
n pulse sequences constructed from the following inversion elements: (a) R ¼ p0; (b) R ¼ X

!� ðp=2Þ0ð3p=2Þp and X
 � ð3p=2Þ0ðp=2Þp .

Each pulse is depicted by a box, with the flip angle (in degrees) given by the inset number, and rf phases of p=2 or 3p=2 represented by white and gray color, respectively. (c)
CNm

n schemes illustrating implementations of various HORROR versions for the case sexc ¼ 8sr and corresponding to C ¼ ð2ppÞp=2 with p ¼ 4 (C10
8; HORRORy),

p ¼ 2 ð C21
8; HORRORy�y) and p ¼ 1 ðC21

4C2�1
4 ; HORRORyyyyÞ. See Section 4.1 and Table 2 for further information. All recoupling pulses in (a–c) operate at xCT

nut ¼ xr=2, with
xCT

nut given by Eqs. (4) and (5) for non-selective and CT-selective conditions, respectively. Only the ðR21
2R2�1

2 Þ2
1 ‘‘M ¼ 2” supercycle is displayed; all others span 16sr . (d)

Double-quantum filtering (2QF) rf pulse scheme, using the dipolar recoupling sequences in (a)-(c) for 2QC generation and reconversion during the intervals sexc ¼ srec [18–
20,25,26]. Black rectangles represent p=2 pulses. Each pulse train is sandwiched between two CT-selective p=2-pulses of rf phases p (left pulse) and 0 (right pulse) for optimal
2QC excitation. sz marks a z-filter interval. (e) Coherence-transfer pathway, indicating the desirable coherence conversions by black lines.
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resulting from a shift of all rf-phases by p : RNm
nRN�m

n

� �
0 RNm

nRN�m
n

� �
p

[40,42]. The same construction principle applies to CNm
nCN�m

n

� �
21

and R21
4½X
!
; X
 �

� 	
21 schemes.

Due to the small numbers of N;n and m used in the RNm
n and CNm

n

hierarchies considered, coupled to the simple basic pulse-elements
employed, several equivalent formulations exist within the sym-
metry-based framework for the schemes shown in Fig. 1. For
example, as rf phases of consecutive pulses are related by p, any
phase-inversion supercycle of this work, R21

nR2�1
n or C21

nC2�1
n ,

may be expressed alternatively as R21
n

� 	
21 and C21

n

� 	
21, respec-

tively. Further, any R21
nR2�1

n scheme built from an amplitude-mod-
ulated inversion element R may be expressed as a C21

2n sequence
based on a cyclic element C. The latter is constructed by concate-
nating R with its p-shifted counterpart (giving RRp) and next shift-
ing all rf-phases by p=2. This results in C � ½Rp=2R3p=2� and the
following pulse sequence equivalence:

R21
nR2�1

n () C21
2n with C � Rp=2R3p=2

� �
ð6Þ

For instance, the R21
2R2�1

2 scheme of this work is identical to a C21
4

pulse train built on the cyclic element C ¼ pp=2p3p=2. Similarly, for
an amplitude-modulated cyclic element C combined with C21

n sym-
metry, it holds that

C21
nC2�1

n () C021
2n with C0 � CCp ð7Þ

Several hierarchical relationships between the various dipolar
recoupling schemes of this work will be examined in Sections 4
and 5.
Fig. 1d shows the experimental rf pulse scheme for creating 2QC
involving solely the central transitions of half-integer quadrupolar
spins [18,19]. On sandwiching each dipolar recoupling pulse-train
between two CT-selective p=2-pulses (black rectangles) of dura-
tion ssel

90 and rf phases p and 0, respectively, dipolar recoupling is
active during sexc for driving each of the SCT

z ! 2QCCT and
2QCCT ! SCT

z transfers. The phase-shift Urec ¼ p=2 is applied to all
pulses associated with the latter process, including the bracketing
p=2-pulses. SCT

z and 2QCCT represent the total longitudinal CT mag-
netization and CT 2QC operators of the spin-pair, respectively. A
coherence transfer diagram is depicted in Fig. 1e and its implemen-
tation by phase-cycling is described in the Supporting Information.

3. Theoretical analysis: Overview

3.1. Spin Hamiltonian

Consider a pulse sequence of Np pulses associated with rf
phases f/1; /2; . . . ; /Np

g and durations fs1; s2; . . . ; sNpg. The
scheme starts at time-point t ¼ t0 ¼ 0 and the pth pulse is active
between t ¼ tp�1 and t ¼ tp. The total pulse train spans an interval
T. We assume that the nominal (‘‘ideal”) rf amplitude is constant
throughout the sequence [Eq. (2)]. The rotating-frame rf Hamilto-
nian during the pth pulse may be expressed as follows

HRF ¼ xRF
nut;nom þxe

� 	
Rzð/pÞSxRzð�/pÞ; tp�1 6 t < tp ð8Þ

¼Hnom
RF þ He

RF ð9Þ

where
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xe ¼ xRF
nut �xRF

nut;nom ð10Þ

represents the deviation of the actual rf nutation frequency from its
nominal value. Eq. (9) that separates the nominal and rf error Ham-
iltonians (proportional to xRF

nut;nom and xe, respectively) is used to
analyze the impact of rf amplitude errors (‘‘rf inhomogeneity”) on
the spin dynamics.

Besides rf amplitude errors, He
RFðtÞ, we only consider the time-

dependent through-space dipolar interaction between two spin-S
j and k, and their respective time-independent isotropic (chemical)
shift terms

HðtÞ ¼ HjkðtÞ þ Hj
CS þ Hk

CS þ He
RFðtÞ þ Hnom

RF ðtÞ ð11Þ

The dipolar Hamiltonian HjkðtÞ is proportional to orientation-depen-
dent factors involving the Euler angles [47] fa ¼ 0;b; cg and to the
coupling constant bjk ¼ �ðl0=4pÞc2

S �hr�3
jk , where rjk is the internu-

clear distance [48]. The angles fb; cg relate the dipolar vector to a
rotor-fixed axis system. We refer to Ref. [48] for detailed Hamilto-
nian expressions. The net resonance offset frequencies of spins j
and k relative to the spectrometer reference (‘‘carrier”) frequency
are denoted by xj

iso and xk
iso, respectively. They represent isotropic

(chemical) shifts, which may also include contributions from sec-
ond-order quadrupolar shifts [13]. We ignore J-interactions and
anisotropic chemical shifts.

As outlined in the Appendix, all AH terms are evaluated in the
interaction-frame of the rf Hamiltonian. As opposed to the more
correct notation employed in the Appendix, for brevity we omit
the ‘‘tilde” symbols on top of the average Hamiltonians. We em-
ploy an AH analysis accounting for the dipolar interaction to first
order. The resulting expressions presented in the next section are
valid for any spin number in the limit of non-selective rf irradia-
tion, meaning that the rf nutation frequency far exceeds the quad-
rupolar frequency xQ [Eq. (4)]. This effectively amounts to
omitting the first-order quadrupolar interactions; their impact on
the spin dynamics will be probed by numerical simulations and
experiments in the subsequent paper. Alternatively, in the other
extreme limit of very weak rf amplitudes that lead to truly CT-
selective irradiation [Eq. (5)], the first-order quadrupolar interac-
tion has no direct influence on the CT 2Q-dynamics [13]. This has
been the underlying assumption made in all theoretical studies
of half-integer spin-recoupling presented thus far [15–18,29].
Some consequences of this approximation were explored numeri-
cally in Ref. [29]. The results verified that the 2Q-dynamics of the
CT alone is qualitatively mimicking that of using the full form of
the rf Hamiltonian in the limit of weak pulses but that the 2QF effi-
ciencies are strongly reduced in the presence of first-order quadru-
polar interactions.

3.2. p=2-Sandwiched recoupling sequences

We assume that the p=2 bracketing pulses are infinitesimally
short (‘‘delta” pulses). The consequences of using finite pulse-
lengths are minor, as discussed in the Supporting Information.
We denote an arbitrary AH term stemming from a ‘‘plain” (i.e.,
non-bracketed) pulse train S by HðnÞðKj�Kk�...Þ. The corresponding
AH term when the same scheme is preceded by a ðp=2Þ/ pulse
and followed by a ðp=2Þ/þp pulse, is labeled HðnÞðKj�Kk�...Þ½S�. The AH
are related by

HðnÞðKj�Kk�...Þ½S� ¼ R/ð�p=2ÞHðnÞðKj�Kk�...ÞR/ðp=2Þ: ð12Þ

Hence, given our choice of / ¼ p (Fig. 1d), HðnÞðKj�Kk�...Þ½S� is obtained

upon a counterclockwise rotation of HðnÞðKj�Kk�...Þ by p=2 around the x-

axis of the rotating frame. A trivial but important consequence of
Eq. (12) is that if a given AH term vanishes for a certain pulse train
S, it also vanishes for the corresponding bracketed sequence ½S�:
HðnÞðKj�Kk�...Þ ¼ 0) HðnÞðKj�Kk�...Þ½S� ¼ 0: ð13Þ
4. Theoretical aspects of double-quantum recoupling

4.1. Average dipolar Hamiltonian

The basic requirement I (see Section 1) for a 2Q dipolar recou-
pling pulse sequence is that its average dipolar Hamiltonian solely
comprises operators of the form Sþj Sþk and S�j S�k to first order. So-
called ‘‘c-encoded” recoupling sequences achieve optimal adher-
ence to requirement (II) by effectively restricting the orientation-
dependence to one Euler angle ðbÞ, whereas the 2QF signal-ampli-
tudes generated from pulse schemes devoid of this property de-
pend on the pair of angles ðb; cÞ [22]. These cases are associated
with ideal 2QF efficiencies of 73% and 52%, respectively [22]. In
the context of half-integer spins, the p=2-sandwiched HORRORy
sequence constitutes the sole 2Q-recoupling option fulfilling both
criteria (I) and (II) [18,22]. Using the notation of Ref. [19], the ap-
pended ‘‘y” denotes the as-assumed rf-phase (Fig. 1c) and distin-
guishes it from the ‘‘HORRORy�y” version introduced by Mali and
co-workers [18], which employs phase-reversal at the midpoint
sexc=2 of the excitation interval (Fig. 1c).

Continuous-wave HORRORy in the absence of bracketing pulses
provides recoupling of 2Q 	 S�j S�k

� 	
, 1Q 	 S�j Skz

� 	
as well as ZQ

	 S�j S
k
� 	

dipolar terms [23,24], reflected by the following first or-

der AH:

Hjk
HORRORy ¼ f ðbjk

;bÞ cosc �
ffiffiffi
3
2

r
Tjk

20þ
1
2

Tjk
22þTjk

2�2

� 	" #
þ sinc Tjk

2�1�Tjk
21

� 	( )
ð14Þ

The function f ðbjk
; bÞ depends on the dipolar coupling constant and

the dipolar vector orientation relative to the rotor-frame z-axis,

f ðbjk
;bÞ ¼ 3

4
ffiffiffi
2
p bjk sin 2b; ð15Þ

and Tjk
2l is the lth component of a second rank irreducible spherical

tensor operator (e.g., see [47,48]):

Tjk
20 ¼

1ffiffiffi
6
p 2SjzSkz �

1
2

Sþj S�k þ S�j Sþk
� 	� �

ð16Þ

Tjk
2�1 ¼ �

1
2

S�j Skz � SjzS�k
� 	

ð17Þ

Tjk
2�2 ¼

1
2

S�j S�k : ð18Þ

On the other hand, when sandwiched between two p=2-pulses of
opposite phases, HORRORy effects a pure c-encoded 2Q Hamilto-
nian [18,22,24]:

Hjk
½HORRORy� ¼ f ðbjk

;bÞ Tjk
22 expf�icg þ Tjk

2�2 expficg
� 	

: ð19Þ

The subscript ½S� implies a p=2-bracketed sequence S. Note the
high scaling factor 3=ð4

ffiffiffi
2
p
Þ � 0:530 of the recoupled 2Q dipolar

terms [Eq. (15)].
From a sole 2Q-recoupling perspective, Eq. (19) is the ideal form

of the dipolar Hamiltonian, fulfilling both criteria (I) and (II). Unfor-
tunately, the 2Q-HORROR option is extremely sensitive to rf
inhomogeneity [22,49]. Mali and co-workers remedied this defi-
ciency by proposing the HORRORy�y scheme [18]. As introduced,
the bracketed 2Q�HORRORy�y technique does not imply any restric-
tion on the sampling of sexc. As such, it is associated with a rather ill-
defined AH, which is c-encoded throughout the first half of the
recoupling interval but becomes non-c-encoded during its second
part. Moreover, chemical shifts (resonance offsets) are recoupled,
unless xnut sexc=2 equals an integer number of 2p pulses. On the
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other hand, if it is arranged that sexc ¼ 4psr , the bracketed
HORRORy�y implementation may be identified by a (bracketed)
C21

4p sequence with basic element C ¼ ð2ppÞp=2. The resulting aver-
age dipolar Hamiltonian carries a cos c-dependence according to

Hjk
½HORRORy�y� ¼ f ðbjk

; bÞ cos c Tjk
22 þ Tjk

2�2

� 	
: ð20Þ

The AH dipolar Hamiltonian of the ‘‘plain” HORRORy�y sequence (i.e.,
C21

4p) is analogous to Eq. (14), except for the absence of Tjk
2�1 opera-

tors, which are removed by the phase-reversal:

Hjk
HORRORy�y ¼ f ðbjk

; bÞ cos c �
ffiffiffi
3
2

r
Tjk

20 þ
1
2
ðTjk

22 þ Tjk
2�2Þ

( )
: ð21Þ

It is instructive to compare the average dipolar Hamiltonians of the
various 2Q-HORROR versions, as they represent the prototype
forms to which all RNm

n symmetry-based recoupling options intro-
duced in Refs. [19,20,29] conform to. The p-based mixed ZQ/2Q
R21

2 recoupling sequence [19] is associated with the same average
dipolar Hamiltonian as HORRORy�y

Hjk
R2 ¼ Hjk

HORRORy�y; ð22Þ

from which the identity of the average Hamiltonians of their
respective bracketed versions follows directly [19]:

Hjk
R2½ � ¼ Hjk

HORRORy�y½ �: ð23Þ

Moreover, as shifting all phases by p within a pulse train leaves its
associated 2Q and ZQ dipolar Hamiltonian terms invariant to first
order AHT [40], it follows that the AH of all RNm

nRN�m
n and

ðRNm
nRN�m

n Þ2
1 supercycles also conforms to Eqs. (22) and (23) for

the respective ‘‘plain” and bracketed pulse schemes. The same holds
for the R21

4½X
!
; X
 � supercycle.

It deserves noting that (i) both Hamiltonians of Eqs. (22) and (23)
excite 2QC from a spin ensemble state of longitudinal polarization
[19], but that (ii) the 2QC buildup (in the absence of other interfering
spin interactions) is twice as rapid when sandwiching the recou-
pling pulses by p=2-pulses. (iii) As discussed further in Section 5.5,

the ZQ dipolar terms 	 S�j S
k
� 	

of the non-bracketed schemes inter-

fere with the 2Q-recoupling due to the non-commutation of the 2Q
and ZQ operators. (iv) Brinkmann and coworkers have provided a
route for obtaining the CT operator contribution of an irreducible
tensor [29]: those results may be exploited to project out the CT
operator contribution Tjk

kl½CT� from any operator TK
kl given in this pa-

per, by using the mapping TK
kl ! cK

k ðSÞT
K
kl½CT�, where cK

k ðSÞ is a pro-
portionality constant depending on the rank k of the tensor and
the spin number S [29]. The primary consequence is an acceleration
of the CT 2QC excitation by the factor cDD

2 ðSÞ compared to the case of
S ¼ 1=2 recoupling [18,29]. However, note that all our simulation re-
sults discussed below solely involved 2QF processes of the central
transitions, which were nevertheless successfully interpreted using
the full spin operator forms employed throughout this paper. The
expressions presented here will also be relevant for future spin-1/
2 applications to be discussed elsewhere.

In summary, all recoupling pulse sequences discussed in this
work (Fig. 1) may be classified in terms of the generic AH expres-
sions Eqs. (21) and (20) in their ‘‘plain” or ‘‘bracketed” versions,
respectively. However, the various pulse schemes generally differ
in their robustness to resonance offsets and rf amplitude errors,
as discussed in Section 5.

4.2. Pulse sequence engineering considerations

2Q-recoupling pulse-sequence construction aiming at meeting
all of the criteria (I)–(VI) in the scope of half-integer quadrupolar nu-
clei is exceedingly difficult/impossible. We have already pointed out
the restrictions set by condition (VI) for obeying the requirements of
resonance offset compensation and to avoid CT signal losses. In prac-
tice, the latter become significant unless xCT

nut < xr . To ensure rea-
sonably accurate spin manipulations by the rf pulses, in general
requiring MAS frequencies exceeding 10 kHz for multi-site samples
(and preferably higher than 20 kHz), the window of usable CT spin
nutation frequencies is approximately xr=2 6 xCT

nut < xr .
Assume that an array of the CT spin-lock signal-amplitudes is re-

corded vs xCT
nut (e.g., see Refs. [15,18]): provided that the spread of

spin resonance offsets is not too substantial and the rf carrier fre-
quency is positioned at the midpoint of the NMR spectrum, signal
losses are generally minimized for xCT

nut < xr=2 and xCT
nut � 3xr=4.

The latter condition usually constitutes the optimal operating
power for the bracketing pulses, as it is low enough to allow CT-
selective operation for samples with widely ranging quadrupolar
coupling constants and yet sufficiently large for accurate spin rota-
tions. In principle, it would be beneficial to operate at xCT

nut � 3xr=4
also during dipolar recoupling, but we have so far not found any
pulse scheme that combines pure 2Q recoupling with a sufficiently
large dipolar scaling factor and reasonable compensation to reso-
nance offsets and rf inhomogeneity around this rf condition.

The restriction of using rf amplitudes that give CT nutation fre-
quencies within the range xr=2 6 xCT

nut < xr during recoupling
strongly limits the available combinations of symmetry-based
parameters N; n and basic C and R elements, as dictated by the
expression for the nutation frequency xCT

nut in Eq. (1). All symme-
try-based 2Q recoupling options developed thus far for spins-1/2
exhibit combinations of N (high) and n (low) that are incompatible
with xCT

nut < xr . This is a primary reason why robust and frequently
employed 2Q-recoupling symmetries such C71

2 (C7 [50], CMR7 [51]
and POST-C7 [52]), C51

2 (SPC-5 [53]), C145
4 (SC14 [54]), R146

2

[39,44,55], R2611
4 [41,56] and many others [3,54,57] cannot be uti-

lized for half-integer quadrupolar spins. The same problem applies
to analogous spin-1/2 techniques such as DRAWS [58], MELO-
DRAMA [59] and BABA [60]. The sole recoupling of c-encoded 2Q
dipolar terms ðT2�2Þ is not incommensurate with low rf-field appli-
cation [3,57]. For instance, R ¼ p combined with the symmetries
R185

10;R187
14 and R209

18 provide ratios xCT
nut=xr of 0.90, 0.64 and

0.56, respectively. However, while isotropic shifts are suppressed
to first-order and the dipolar scaling factors are decent (>0.1), the
long cycle periods of these sequences leads in practice to unaccept-
ably large high-order AH terms associated with isotropic shifts and
other undesirable interactions.

We have evaluated a large number of potential symmetry-num-
bers and basic elements by AHT and numerical simulations of the
2QC excitation dynamics. Here we only discuss those found that
fulfill requirements (I) and (II) (within the sacrifice of c-encoding
[22]), while simultaneously providing reasonable compensation
to resonance offsets and rf amplitude errors (i.e., conditions (III)
and (IV). Note that breaking requirement (I) necessarily also com-
promises condition (II) due to the simultaneous presence of a mul-
titude of dipolar operators, that are normally associated with
distinct spatial orientational dependencies and thereby lead to re-
duced 2QF efficiencies.

To our knowledge, there do not exist other options to simulta-
neously fulfill requirements (I) and (VI) than using amplitude-mod-
ulated p=2 pulse-sandwiched recoupling schemes operating at the
HORROR condition xCT

nut ¼ xr=2. Hence, there is no coincidence that

all symmetries considered have low ratios of N=n ¼ 1 R21
2;R42

4

� 	
and N=n ¼ 1=2 R21

4;C21
4

� 	
and are combined with basic elements

giving summed flip angles of p and 2p, respectively. Yet, c-encoded
recoupling needs to be sacrificed to compensate for rf
inhomogeneity.

The combination of sandwiching p=2-pulses and ZQ/2Q recou-
pling schemes offering ultra-low-power operation adds another



272 M. Edén, A.Y.H. Lo / Journal of Magnetic Resonance 200 (2009) 267–279
degree of freedom in the dipolar recoupling engineering, as the
bracketing pulses rotates the mixed ZQ/2Q operators into a pure
2Q Hamiltonian [Eq. (12)]. We wish to highlight this (old) concept,
which after its introduction [22–24] does not appear to have been
developed much further, except in Ref. [49] and in the realm of
half-integer spins [18–21]. Demonstrations of improved HOR-
ROR-type supercycles will be given elsewhere in the context of
spins-1/2.
5. Compensation to isotropic shifts and RF errors

5.1. Overview

By examining their respective AH terms, we will inspect the
robustness of the various 2Q-recoupling pulse schemes of Fig. 1
to the presence of rf amplitude errors and isotropic shifts. The
average Hamiltonians were calculated according to Eq. (41) of
the Appendix. The results are summarized in Tables 1–3 for the
schemes R21

2 [19], R21
4 [20] and CNm

n used to describe the various
2Q-HORROR implementations of Refs. [18,22], as based on the
pulse-elements p; ðp=2Þ0ð3p=2Þp and 2p, respectively. Each Table
lists the AH terms for isotropic shifts up to third order

HðnÞCS ; n ¼ 1; 2; 3
� 	

and all cross-terms between rf errors and isotro-

pic shifts to second Hð2ÞðCS�RFÞ

h i
and third ½Hð3ÞðCS�CS�RFÞ and Hð3ÞðCS�RF�RFÞ�

order, both in the absence and presence of infinitesimally short
p=2 bracketing pulses.

For amplitude-modulated pulse-trains, all AH terms solely
involving rf amplitude mis-settings He

RF

� �
vanish identically be-

yond first order:

HðnÞRF ¼ 0;n > 1 ðamplitude-modulated pulse sequenceÞ ð24Þ

Furthermore, a cyclic Unom
RF ðT; 0Þ ¼ 1

� �
amplitude-modulated pulse-

sequence associated with zero effective flip angle [e.g., b/b/þp] ful-
fill Hð1ÞRF ¼ 0 [3]. This holds for all schemes discussed in this paper,
except for 2Q-HORRORy [18,22].

Onwards, we use the shorthand form xnut for the nominal nuta-
tion frequency xnut;nom. Given the choice of AH analysis in the
frame of the rf interaction, HðnÞ is proportional to xn�1

nut . As xnut is
directly related to the spinning frequency, all expressions in Tables
1–3 may be reformulated as inverse powers of xr by making the
Table 1
Average Hamiltonian terms for supercycled R21

2 recoupling sequences based on the p0 inv

Hð1ÞCS Hð2ÞCS Hð2ÞðCS�RFÞ

Pulse sequence

R21
2 � R42

4 � 2
pxisoSx 0 xisox�

xnut

2
p Sx � Sz

 �

R21
2R2�1

2
0 0 �xisox�

xnut
Sz

R42
4R4�2

4
0 0 �xisox�

xnut
Sz

ðR21
2R2�1

2 Þ2
1 0 0 �xisox�

xnut
Sz

ðR42
4R4�2

4 Þ2
1 0 0 �xisox�

xnut
Sz

Sandwichedb

R21
2 � R42

4 � 2
pxisoSx 0 xisox�

xnut

2
p Sx þ Sy

 �

R21
2R2�1

2
0 0 xisox�

xnut
Sy

R42
4R4�2

4
0 0 xisox�

xnut
Sy

ðR21
2R2�1

2 Þ2
1 0 0 xisox�

xnut
Sy

ðR42
4R4�2

4 Þ2
1 0 0 xisox�

xnut
Sy

a Isotropic chemical shifts and rf errors are taken into account and (for brevity) given fo
for spin j to be replaced by xj

iso and the operator Sa by Sja ða ¼ x; y; zÞ, and analogously
b Average Hamiltonian terms for the corresponding pulse sequence S when brackete
substitution xnut ! xr=2. Depending on the count of the contrib-
uting interaction, ‘‘CS” or ‘‘RF”, the nominator of the AH term is
proportional to that power of xiso and xe, respectively. For exam-
ple, the operator Hð3ÞðCS�CS�RFÞ 	 x2

isoxe=x2
nut, whereas Hð3ÞðCS�RF�RFÞ 	

xisox2
e=x2

nut. For the low-power recoupling applications considered
here, the AH series expansion (Eq. 36) converges slowly and the
high-order terms naturally gain significant influence on the spin
dynamics.
5.2. R21
2 Schemes based on p-pulses

As demonstrated both numerically and experimentally by 23Na
and 27Al MAS NMR in Refs. [19,20,29], p-based R21

2 pulse schemes
perform poorly in the simultaneous presence of rf amplitude errors
and isotropic shift-differences of a few kHz. Here we show theoret-
ically the underlying reasons for this, focussing initially on the
non-bracketed (‘‘plain”) pulse sequences as their AH terms convey
all relevant information about the 2Q-recoupling performance of
the corresponding bracketed schemes [see Eqs. (12) and (13)].

A fundamental problem with the basic R21
2 pulse sequence is its

recoupling of isotropic shifts to first order. It may be verified from
Table 1 that phase-inversion supercycling cancels AH terms pro-
portional to transverse spin angular momentum operators Sx and
Sy [35,36,40,44], and we showed in Ref. [19] that the shift-recou-
pling can be eliminated by utilizing R21

2R2�1
2 . Nevertheless, as all

higher-order AH terms generated by R21
2 also comprises longitudi-

nal operators ðSzÞ, several cross-terms between rf errors and isotro-
pic shifts remain to second and third order AHT for the R21

2R2�1
2

supercycle.
Except for the third-order term Hð3ÞðCS�CS�RFÞ, all AH terms of the

R21
2R2�1

2 and R42
4R4�2

4 pulse schemes are longitudinal, implying
that the next stage of ‘‘M ¼ 2 supercycling” does not cancel them
(Table 1). Nevertheless, the numerically simulated 2QF results
from R21

2R2�1
2

� 	
21 and R42

4R4�2
4

� 	
21 for resonance offset and rf er-

ror variations often display significantly improved performance
relative to their phase-inversion supercycle-counterparts in the
presence of quadrupolar interactions. This will be illustrated in
the following paper.

A similar peculiar scenario applies for the relationship between
the R21

2 and R42
4 pulse schemes; the latter is simply a repetition of

the former, implying that the two recoupling sequences are associ-
ersion element.a

Hð3ÞCS Hð3ÞðCS�CS�RFÞ Hð3ÞðCS�RF�RFÞ

x3
iso

2x2
nut

4
3p Sx � Sz

 � 0 xisox2

�
x2

nut

ðp2�4Þ
2p Sx þ Sz

n o
� x3

iso
2x2

nut
Sz

2x2
isox�

x2
nut

Sy
xisox2

�
x2

nut
Sz

� x3
iso

2x2
nut

Sz
4x2

isox�

x2
nut

Sy
xisox2

�
x2

nut
Sz

� x3
iso

2x2
nut

Sz
0 xisox2

�
x2

nut
Sz

� x3
iso

2x2
nut

Sz
0 xisox2

�
x2

nut
Sz

x3
iso

2x2
nut

4
3p Sx þ Sy

 � 0 xisox2

�
x2

nut

ðp2�4Þ
2p Sx � Sy

n o
x3

iso
2x2

nut
Sy

2x2
isox�

x2
nut

Sz �xisox2
�

x2
nut

Sy

x3
iso

2x2
nut

Sy
4x2

isox�

x2
nut

Sz �xisox2
�

x2
nut

Sy

x3
iso

2x2
nut

Sy
0 �xisox2

�
x2

nut
Sy

x3
iso

2x2
nut

Sy
0 �xisox2

�
x2

nut
Sy

r each sequence as calculated for a single spin-1/2. For a spin-pair, each factor xiso is
for spin k.

d by infinitesimally short p=2 pulses: ðp=2ÞpSðp=2Þ0.



Table 2
Average Hamiltonian terms for CNm

n recoupling sequences based on the cycles specified in column two.a

Cycle Remark Hð1ÞCS Hð1ÞRF Hð2ÞCS Hð2ÞðCS�RFÞ Hð3ÞCS Hð3ÞðCS�CS�RFÞ Hð3ÞðCS�RF�RFÞ

Pulse sequence

C10
2

ð2pÞp=2 HORRORy 0 x�Sy x2
iso

2xnut
Sy

xisox�
xnut

Sz x3
iso

2x2
nut

Sz �x2
isox�

x2
nut

Sy �xisox2
�

x2
nut

Sz

C21
4p

ð2ppÞp=2 HORRORy�yb 0 0 0 xisox�
xnut

Sz x3
iso

2x2
nut

Sz
0 �xisox2

�
x2

nut
fppSx þ Szg

C21
4C2�1

4
ð2pÞp=2 HORRORyyyyc 0 0 0 xisox�

xnut
Sz x3

iso
2x2

nut
Sz

0 �xisox2
�

x2
nut

Sz

Sandwichedd

C10
2

ð2pÞp=2 HORRORy 0 x�Sz x2
iso

2xnut
Sz

�xisox�
xnut

Sy � x3
iso

2x2
nut

Sy �x2
isox�

x2
nut

Sz
xisox2

�
x2

nut
Sy

C21
4p

ð2ppÞp=2 HORRORy�y 0 0 0 �xisox�
xnut

Sy � x3
iso

2x2
nut

Sy
0 xisox2

�
x2

nut
f�ppSx þ Syg

C21
4C2�1

4
ð2pÞp=2 HORRORyyyy 0 0 0 �xisox�

xnut
Sy � x3

iso
2x2

nut
Sy

0 xisox2
�

x2
nut

Sy

a See footnote to Table 1 for details on notation. Provided that the 2QC excitation curve is sampled at integer numbers of completed sequences, these pulse trains are
representative of 2Q-HORROR and supercycles thereof (column 3).

b This implies applying p ð2pÞp=2 pulses, followed by p ð2pÞ3p=2 pulses; it then corresponds to the HORRORy�y sequence introduced in Ref. [18], with the option of sampling
the 2QF buildup after each completed cycle.

c A subsequent stage of supercycling, which may alternatively be interpreted as a C21
8 sequence based on C ¼ ð2pÞp=2ð2pÞ3p=2.

d Average Hamiltonian terms for the corresponding pulse sequence when bracketed by infinitesimally short p=2 pulses: ðp=2ÞpS ðp=2Þ0.

Table 3
Average Hamiltonian terms for supercycled R21

4 recoupling sequences based on the ðp=2Þ0ð3p=2Þp inversion element.a

Hð1ÞCS Hð2ÞCS Hð2ÞðCS�RFÞ Hð3ÞCS Hð3ÞðCS�CS�RFÞ Hð3ÞðCS�RF�RFÞ

Pulse sequence

R21
4

0 0 �xisox�
xnut

Sx � x3
iso

2x2
nut

Sx
x2

isox�

x2
nut

Sy
xisox2

�
x2

nut
Sx þ p

2 Sz

 �

R21
4R2�1

4
0 0 0 0 0 pxisox2

�
2x2

nut
Sz

R21
4½X
!
; X
 � 0 0 0 0 x2

isox�

x2
nut

Sy
pxisox2

�
2x2

nut
Sz

ðR21
4R2�1

4 Þ2
1 0 0 0 0 0 pxisox2

�
2x2

nut
Sz

ðR21
4½X
!

, X
 �Þ21 0 0 0 0 0 pxisox2

�
2x2

nut
Sz

Sandwichedb

R21
4

0 0 �xisox�
xnut

Sx � x3
iso

2x2
nut

Sx
x2

isox�

x2
nut

Sz
xisox2

�
x2

nut
Sx � p

2 Sy

 �

R21
4R2�1

4
0 0 0 0 0 � pxisox2

�
2x2

nut
Sy

R21
4½X
!
; X
 � 0 0 0 0 x2

isox�

x2
nut

Sz � pxisox2
�

2x2
nut

Sy

ðR21
4R2�1

4 Þ2
1 0 0 0 0 0 � pxisox2

�
2x2

nut
Sy

ðR21
4½X
!
; X
 �Þ21 0 0 0 0 0 � pxisox2

�
2x2

nut
Sy

a See footnote to Table 1 for details on notation. The sequences are based on the element X
�! � ðp=2Þ0ð3p=2Þp , except for R21

4½X
!
; X
 �, which is built on a combination of X

!

and X
 � ð3p=2Þ0ðp=2Þp (see Fig. 1b).

b Average Hamiltonian terms for the corresponding pulse sequence S when bracketed by infinitesimally short p=2 pulses: ðp=2ÞpSðp=2Þ0.

M. Edén, A.Y.H. Lo / Journal of Magnetic Resonance 200 (2009) 267–279 273
ated with identical AH terms. Table 1 shows that the same applies
for the corresponding phase inversion supercycles, except for the
third-order term Hð3ÞðCS�CS�RFÞ, which is twice as large for R42

4R4�2
4 .

Yet, in the presence of quadrupolar interactions, the experimen-
tally observed 2Q-recoupling performance is often better for the
R42

4R4�2
4 pulse train relative to R21

2R2�1
2 , particularly so for spins-

5/2 [19,20]. Hence, despite that the present AH analysis makes a
dent in understanding many observed relative merits and disad-
vantages of the 2Q-recoupling options of Refs. [18–20], it fails to
explain this feature. Interestingly, Amoureux and co-workers have
recently proposed generalized recoupling schemes RNN=2

N RN�N=2
N

with N ¼ 2; 4; 6; . . . (i.e., of which the R21
2R2�1

2 and R42
4R4�2

4

schemes of Ref. [19] constitute the first two members) for 1H
2QC excitation [27]. Differences in the resonance-offset compensa-
tion between the bracketed and plain schemes were reported,
where the latter was concluded to provide superior robustness.
The reasons for these observations are unclear, as commented in
Section 5.5.
5.3. HORROR supercycles

Table 2 lists the corresponding AH terms for various HORROR
recoupling options, each of which may be identified as a 2p-based
CNm

n sequence. The AH expressions for HORRORy compared with
those of HORRORy�y evidence that the very pronounced 2QF
improvements observed experimentally for the latter [18,19,25]
stem primarily from the cancellation of the first-order rf error term
Hð1ÞRF and the second-order shift term Hð2ÞCS .

Further, experimentally observed 23Na and 27Al 2QF efficiencies
from several model samples (a� Al2O3 and Na2SO3 [19]; AlPO-31
[25]) consistently evidenced that when the rf carrier is set such
that resonance offsets are small/absent, R21

2R2�1
2 delivers higher

2QF efficiency than HORRORy�y. However, for increasing resonance
offsets, the advantage of R21

2R2�1
2 over HORRORy�y shrinks and the

effective offset bandwidths of these two recoupling schemes are
similar [19,25]. They both perform poorly in cases of even rela-
tively small (a few kHz) differences in resonance frequencies
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between the recoupled spins [19,20,25]. As R21
2R2�1

2 (Table 1) and
HORRORy�y (Table 2) manifest identical error terms to second-or-
der AHT, the primary reason for these observations originate from
their differences in Hð3ÞðCS�CS�RFÞ and Hð3ÞðCS�RF�RFÞ. The third-order cross-
term Hð3ÞðCS�CS�RFÞ vanishes for HORRORy�y, but is significant for
R21

2R2�1
2 . On the other hand, the term Hð3ÞðCS�RF�RFÞ emphasizes rf er-

ror contributions; in the case of the bracketed HORRORy�y se-
quence, it comprises an additional term proportional to Sx, that
accumulates as sexc increases. This constitutes the main limiting
factor for rf error compensation of HORRORy�y and leads to much
higher susceptibility to rf inhomogeneity compared to the case of
R21

2R2�1
2 applied near resonance. The transverse operator-contribu-

tion may be cancelled by another stage of supercycling, denoted by
HORRORyyyy in Table 2 and constituting a C21

4C2�1
4 sequence based

on C ¼ ð2pÞp=2, or equivalently, C21
8 symmetry combined with

C ¼ ð2pÞp=2ð2pÞ3=2 [Eq. (7)]. We have not evaluated the
HORRORyyyy supercycle further.

For the remaining of this paper and the subsequent one, we fo-
cus on the overall superior RNm

n-based recoupling schemes.

5.4. R21
4 Schemes based on ðp=2Þ0ð3p=2Þp

R21
4 supercycles based on the inversion element ðp=2Þ0ð3p=2Þp

were introduced in Ref. [20] for remedying the susceptibilities of
the p-based recoupling schemes. The experimentally (23Na and
27Al NMR) as well as numerically verified improvements achieved
by supercycles of R21

4 stem from their elimination of higher-order
AH offset/rf error cross-terms and particularly the leading term
Hð2ÞðCS�RFÞ (Table 3) that plagues both the R21

2R2�1
2 (Table 1) and

HORRORy�y (Table 2) schemes. We made a misleading statement
in Ref. [20], saying that the X

!¼ ðp=2Þ0ð3p=2Þp composite pulse
is ‘‘internally compensated for chemical shifts and rf errors”. While
the element itself is not compensated, it has beneficial properties
when combined with R21

4 symmetry in that both isotropic shifts
and rf amplitude errors cancel to first order AHT (Table 3). How-
ever, the basic R21

4 scheme possesses the same intrinsic problems
of large second-order cross-terms between chemical shifts and rf
errors as the R21

2R2�1
2 sequence.

The reasons for the significant 2Q-recoupling enhancements of-
fered by the R21

4R2�1
4 and R21

4½X
!
; X
 � supercycles may be understood

as follows: The enhanced robustness to isotropic chemical shifts
and rf amplitude errors offered by POST-C7 [52] relative to its par-
ent C7 scheme [50] stems from the observation that the most influ-
ential higher-order AH terms of the latter scheme are proportional
to longitudinal Sz operators [52]. Consequently, a p=2-pulse per-
mutation of the original element employed for C7 ½ð2pÞ0ð2pÞp� re-
sults in ð3p=2Þ0ð2pÞpðp=2Þ0, and in a accompanied rotation of the
undesirable longitudinal AH error terms into transverse operators
[61,36,52], in analogy with Eq. (12). These terms are subsequently
cancelled over the completed C7 cycle [36,52].

A similar scenario applies to the unwanted AH contributions of
R21

2R2�1
2 : this pulse sequence is related to R21

4 by a p=2-pulse per-
mutation (see Fig. 1). A completed R21

4 scheme corresponds to a
‘‘POST-C” cycle ðp=2Þp=2ð2pÞ3p=2ð3p=2Þp=2, and its most damaging
second- and third-order AH terms involve transverse spin opera-
tors (Table 3). They are consequently cancelled over the R21

4R2�1
4

supercycle, which may alternatively be identified as a ‘‘POST-C”-
based C21

8 sequence [Eq. (6)]. In practice, this scheme leads to a
dramatically improved compensation to the combined effects of
resonance offsets and rf inhomogeneity [20], as will be illustrated
further by numerical simulations in Section 6.

Except for R21
4½X
!
; X
 �, the supercycles based on the composite

inversion element ðp=2Þ0ð3p=2Þp annihilate all undesirable AH
terms up to third-order AHT but that of Hð3ÞðCS�RF�RFÞ, which is propor-
tional to Sz for the non-bracketed schemes (Table 3). Hence, this
remaining term may be eliminated by a p=2-pulse permutation,
followed by a concatenation of the resulting sequence with its by
p phase-shifted counterpart. When applied to the R21

4R2�1
4 scheme,

the result is a R21
8R2�1

8 sequence based on the composite element
R ¼ ð2pÞpð3p=2Þ0ðp=2Þp and spanning 16 rotational periods. This
supercycle cancels all contributions from resonance offsets and rf
amplitude errors to third order AHT. As will be discussed else-
where, the R21

8R2�1
8 pulse train is promising for ‘‘ultra-low-power”

broadband 2Q-recoupling of spins-1/2 at very high spinning fre-
quencies. However, in the present context of 2Q-recoupling of
half-integer spins, it has hitherto experimentally not offered any
improvements relative to the (seemingly inferior) combinations
of phase inversion and MQ phase-cycles listed in Table 3. Conse-
quently, we do not consider it in the present work.

5.5. Effects of undesirable linear AH operators

Here we discuss the effects on the 2Q recoupling dynamics from
damaging linear angular momentum operators ðSx; Sy; SzÞ, which
stem from the isotropic shifts and their cross-terms with rf errors.
The following commutators [35] are relevant:

xj
isoSjz þxk

isoSkz; Tjk
22 þ Tjk

2�2

� 	h i
¼ xj

iso þxk
iso

� 	
Tjk

22 � Tjk
2�2

� 	
ð25Þ

xj
isoSjx þxk

isoSkx; Tjk
22 þ Tjk

2�2

� 	h i
¼ 1

2
ðxj

iso �xk
isoÞ �Tjk

11 þ Tjk
1�1

� 	n
þ xj

iso þxk
iso

� 	
Tjk

21 þ Tjk
2�1

� 	o
ð26Þ

xj
isoSjy þxk

isoSky; Tjk
22 þ Tjk

2�2

� 	h i
¼ � i

2
xj

iso �xk
iso

� 	
Tjk

11 þ Tjk
1�1

� 	n
þ xj

iso þxk
iso

� 	
Tjk

21 � Tjk
2�1

� 	o
ð27Þ

where

Tjk
1�1 ¼

1
2

S�j Skz � SjzS
�
k

� 	
ð28Þ

Accordingly, whenever the AH error term is proportional to Sax or
Say ða ¼ j; kÞ, a non-zero commutator results regardless of the val-
ues of xj

iso and xk
iso, except in the trivial case of xj

iso ¼ xk
iso ¼ 0.

Hence, the presence of AH terms proportional to transverse opera-
tors are always detrimental to the 2QC excitation. On the other
hand, if the undesirable AH term involves Sz and the carrier fre-
quency is positioned at the mid of the two resonances of spins j
and k;xj

iso ¼ �xk
iso and Eq. (25) vanishes. This property applies to

all AH terms comprising odd powers of xj
iso and xk

iso, and holds
for all second and third order terms except for Hð3ÞðCS�CS�RFÞ. It explains
why 2Q dipolar recoupling sequences are prone to tolerating rea-
sonably large differences in isotropic shifts among the recoupled
spins, provided that the rf carrier is set such that the sum of reso-
nance offsets is (nearly) zero (e.g., see the results of Ref. [52]). Nev-
ertheless, recoupling associated with poor offset-compensation
break down rapidly outside of this regime.

As follows from Eq. (12), a non-vanishing AH term of a brack-
eted pulse sequence is related to that of the basic scheme by a
p=2-rotation around the x-axis. The results of Tables 1–3 mean that
a p-based pulse scheme in the absence of bracketing pulses
generate AH cross-terms proportional to Sz, which is rotated into
transverse components by the bracketing pulses. Therefore, a
non-bracketed R21

2 pulse scheme may in the scenario of small res-
onance offsets be somewhat better compensated relative to that
being sandwiched between p=2 pulses. However, the differences
are expected to be negligible for practical purposes.

Furthermore, in the case of large dipolar interactions in multi-
spin systems, the non-bracketed recoupling sequences suffer inher-
ent problems from the non-commutation between recoupled ZQ
and 2Q terms from different spin-pairs. Analogously to Eq. (25),
the ZQ terms result in dephasing of the 2QC:



M. Edén, A.Y.H. Lo / Journal of Magnetic Resonance 200 (2009) 267–279 275
Tjm
20; T

jk
2�2

h i
¼� 1ffiffiffi

6
p Tjk

2�2Tm
10 þ Tj

10Tkm
2�2

� 	
ð29Þ

¼ � 1
2
ffiffiffi
6
p S�j S�k Smz þ SjzS�k S�m

� 	
ð30Þ

For an isolated spin-pair, on the other hand, the commutation of
Tjk

2�2 and Tjk
20 implies a vanishing influence of the latter on the 2QC

dynamics, apart from the factor of 1/2 slower coherence buildup
from the non-bracketed pulse sequences [compare Eqs. (21) and
(20)]. We have verified both the slower 2QC excitation and the low-
er 2QF efficiencies delivered by leaving out the bracketing pulses in
the contexts of 23Na and 27Al NMR on Na2SO3 and a� Al2O3, respec-
tively (data not shown).

6. Numerical simulations

6.1. Resonance offset variations

Fig. 2 shows numerically calculated CT 2QF responses upon
variations in resonance offsets from a pair of S ¼ 3=2 subject to
increasing differences in isotropic shifts ðDisoÞ, while applying the
bracketed pulse sequences (displayed in the right-most panel) for
2QC excitation. All simulations employed the nominal value of
the rf nutation frequency xnut ¼ xr=2: Consequently, as xe ¼ 0
all differences in the 2QF results among the recoupling sequences
stem solely from their respective AH terms HðnÞCS . The results are
grouped so as to illustrate the consequence of each supercycling
stage (as well as the choice of basic R element); they are examined
from the viewpoint of the AH expressions of Tables 1 and 3.

As discussed in the previous section, the compound cycles R21
2

and R21
4 are expected to tolerate very small shift-differences:
Fig. 2. Numerically simulated 2QF efficiencies for the transfer SCT
z ! 2QCCT ! SCT

z versus
2Q-recoupling schemes identified in the right-most panel. The calculations were perform
interactions at a MAS frequency of 22.5 kHz and using the nominal nutation frequency x
the two spins are specified at the top of each panel. 2QF values were sampled around sexc

condition. The computations were carried out according to Ref. [20], using ssel
90 ¼ 1:67 l
indeed, the 2Q excitation from R21
2 is perturbed significantly even

for Diso ¼ 2 kHz (Fig. 2b), whereas the X
!

-based scheme R21
4 offers a

slightly enhanced performance (2h) by virtue of its cancellation of
resonance offsets to first order AHT (see Table 3). However, no 2QC
excitation is observed when Diso exceeds �2 kHz (Fig. 2i), due to
the growing interferences from the third-order term Hð3ÞCS. For the
R21

2R2�1
2 and R21

4 schemes, this term only differs in the identity
of the respective transverse spin operator. Consequently, these se-
quences provide essentially identical responses to resonance-offset
variations. A rather peculiar behavior is observed for the R21

2 ðR42
4Þ

scheme in the case of Diso ¼ 0 (Fig. 2(a, d)): despite that the 2QF
efficiency is perturbed for minute deviations from on-resonance
irradiation, decent 2QC signals are obtained for offset-values with-

in a few kHz, even in a regime where the R21
2R2�1

2 R42
4R4�2

4

� 	
supercycles do not excite 2QC. This feature of R21

2 probably origi-

nates from interferences between the operators Hð1ÞCS and Hð3ÞCS , that
carry opposite signs and may partially cancel each other (Table 1).

In the case of the X
!

-based sequences, the undesirable term Hð3ÞCS

is removed by the R21
4R2�1

4 and R21
4½X
!
; X
 � supercycles, thereby

resulting in a significantly enhanced offset compensation
(Fig. 2(h, i, k, l)). From Fig. 2(i, l) follows that while the respective
effective bandwidths narrow as the isotropic shift-difference
grows, the R21

4R2�1
4 and R21

4½X
!
; X
 � supercycles may excite 2QC

within Diso K 5 kHz at the given spinning frequency of 22.5 kHz.
In general, 2QC may be generated for shift-differences within
2pDiso Kxr=4, provided that the rf carrier frequency is positioned
near the midpoint of the NMR spectrum.

As expected from the AH expressions in Tables 1 and 3, no fur-
ther improvements of the 2QC excitation are offered by the M ¼ 2
supercycles, except in the case of R21

4½X
!
; X
 �

� 	
21, which operates
resonance offset, assuming a powder of S ¼ 3=2 spin-pairs subjected to each of the
ed for a dipolar coupling constant bjk

=2p ¼ �40 Hz in the absence of quadrupolar
CT
nut=2p ¼ xRF

nut=2p ¼ 11:25 kHz. Isotropic chemical shift-separations ðDisoÞ between
= 3.5 ms, at the optimum excitation interval for each sequence under the particular

s and powder averaging was performed over 1154 ZCW orientations [66–68].
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equally well as the R21
4R2�1

4 scheme. While seemingly inferior, a
main reason for discussing R21

4½X
!
; X
 �-based sequences is that

experimental 27Al NMR results from both crystalline and amor-
phous Al-bearing samples indicate that the R21

4½X
!
; X
 � scheme of-

ten provides higher 2QF signals than R21
4R2�1

4 [20].
6.2. Rf amplitude errors

Fig. 3 conveys the robustness of each recoupling scheme to rf
amplitude mis-settings from its nominal value xnut ¼ xr=2. In
the case of equal chemical shifts of the recoupled spins (Diso ¼ 0;
left panel of Fig. 3), all sequences perform excellently and admit
large deviations ð�20%Þ in the rf amplitudes without significant
perturbations of the 2QF amplitudes. The R21

2 scheme performs
overall best, and further supercycling narrows the bandwidth,
regardless of whether R21

2 or R21
4 compound cycles are considered.

The reason is simply that in the absence of other interfering inter-
actions, R21

2 offers the most rapid alternation between rf phases
�p=2 and therefore the fastest compensation mechanism to rf
amplitude errors.

However, all R21
2-based pulse schemes perform very poorly even

for minute chemical shift-differences, and an erratic 2QC excitation
results (Fig. 3; middle panel). It originates from the second-order
cross-term between isotropic shifts and rf errors (Table 1). As for
the susceptibility with respect to resonance offsets in Fig. 2, the ba-
sic R21

4 scheme also gives poor 2QC excitation due to this cross-
term. However, as discussed above, this term is together with most
damaging third-order AH terms cancelled by phase-inversion
supercycling, and a significantly better performance of the
a

d

g

j

Fig. 3. Simulations using identical parameters as in Fig. 2, but instead varying the rati
xnut;nom ¼ xr=2. The rf carrier was for each sequence positioned at its optimal resonance
resonances.
R21
4R2�1

4 pulse scheme is observed. Yet, in the presence of larger
shift differences (Fig. 3(i, l)), the rf error compensation is only rea-
sonably good. As observed for the offset-compensation, the MQ

phase-cycle R21
4½X
!
; X
 �

� 	
21 offers some improvements relative to

R21
4½X
!
; X
 �, particularly for the case of Diso ¼ 5 kHz (Fig. 3l). This

by due to cancellation of the Hð3ÞðCS�CS�RFÞ term of the latter scheme.
7. Conclusions

We have presented average Hamiltonian expressions that ex-
plain several differences observed in the experimental 2QF re-
sponses to rf inhomogeneity and resonance offsets for the
HORRORy�y [18], R21

2R2�1
2 [19], R21

4R2�1
4 and R21

4½X
!
; X
 � [20] super-

cycles, as previously evaluated numerically and experimentally in
Refs. [19,20,25]. Our analytical results were also supported by
numerically exact computer simulations of the 2QF efficiency on
variations of rf errors and resonance offsets, which further con-
firmed the superiority of the R21

4-based supercycles of Ref. [20].
Their favorable features compared to the HORRORy�y and R21

2R2�1
2

pulse sequences originate from better suppression of high-order
AH cross-terms between isotropic shifts and rf amplitude errors.

Nevertheless, as simplified AHT calculations may have limited
predictability for applications to half-integer quadrupolar spins
in rigid solids, the AHT results of this study will be complemented
by numerical simulations and 23Na and 27Al MAS NMR experi-
ments in the following paper: we will then directly explore the
consequences of first and second-order quadrupolar interactions
k l

ih

e f

cb

o xnut=xnut;nom between the rf nutation frequency relative to its nominal value of
offset (see Fig. 2); for Diso–0 this generally corresponded to the midpoint of the two
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on the dipolar recoupling as well as its dependence on the external
magnetic field.

Further, some results presented here give guidance to the prom-
ises and limitations of utilizing (very) low rf-power supercycles
operating at the HORROR-condition xRF

nut ¼ xr=2
� �

for driving
homonuclear recoupling among dilute spins-1/2 at the ultra-fast
MAS frequencies (>60 kHz) currently available. Low-power recou-
pling is particularly important for applications to biological systems
where concerns about the sample integrity is crucial due to the
heating from rf fields applied on at least one [62], and usually
two, rf channels: for the latter case, the rf-demands for recoupling
the dilute spins demands a factor of three higher 1H nutation fre-
quencies for removal of interfering heteronuclear couplings
[51,63,64].
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Appendix A

Here the basic calculations underlying the AH terms presented
in Sections 4 and 5 are outlined. They follow the same treatments
as reviewed in numerous publications (e.g., see [32–34]), but add
some features to facilitate evaluations of high-order AH terms in
spin systems involving several interactions. AHT is also specifically
developed for RNm

n and CNm
n classes of symmetry-based pulse se-

quences [3,37], including their supercycles discussed in this work
[40,41,45]. However, the present AH description does not follow
that usually employed in the context of symmetry-based recou-
pling; rather, the simplicity of the present pulse sequences (low
N) in conjunction with a sole consideration of spatially time-inde-
pendent interactions (isotropic chemical shifts and rf errors) read-
ily allows for a ‘‘traditional” AH description up to third order in the
Magnus expansion [65].

A.1. Interaction-frame Hamiltonian

Employing the notation of Section 3.1, the rotating-frame spin
Hamiltonian may be expressed

HðtÞ ¼
XNint

j

HKj
ðtÞ þ Hnom

RF ðtÞ þ He
RFðtÞ ð31Þ

where Nint is the number of distinct spin interactions K in a multi-
spin system. Following the well-established framework of AHT
[32,33], we first transform the spin Hamiltonian into an interac-
tion-frame defined by the ‘‘ideal” rf contribution, Hnom

RF ðtÞ , by
applyingeHðtÞ ¼ Unom

RF ðt;0Þ
�1HðtÞUnom

RF ðt;0Þ

þ i
d
dt

Unom
RF ðt; 0Þ

�1
� �

Unom
RF ðt;0Þ ð32Þ

with the rf pulse propagator given by

Unom
RF ðt;0Þ ¼ bT exp �i

Z t

0
dt0Hnom

RF ðt0Þ
� �

: ð33Þ

and bT representing the Dyson time-ordering (super)operator. The
last term in Eq. (32) cancels Hnom

RF ðtÞ of the rotating-frame Hamilto-
nian, meaning that each of the individual Hamiltonians eHKðtÞ may
be obtained directly by the following operator sandwich:eHKðtÞ ¼ Unom

RF ðt; 0Þ
�1HKðtÞUnom

RF ðt; 0Þ: ð34Þ
During the pth pulse (Section 3.1), the interaction-frame rf error
Hamiltonian is given byeHe

RF ¼ He
RF ¼ xeRzð/pÞSxRzð�/pÞ; tp�1 6 t < tp: ð35Þ
A.2. Average Hamiltonian expansion

The time-independent AH of the interaction-frame Hamiltonian
[Eq. (32)] is derived from the Magnus expansion [65]

eH ¼ eHð1Þ þ eHð2Þ þ eHð3Þ þ . . . ð36Þ

The nth order AH term comprises nested commutators between the
various interaction-frame Hamiltonians eHKj

ðtÞ; eHKk
ðtÞ; . . . of the spin

system, including the rf error terms. The first-order AH of interac-
tion K corresponds to its time-average over the pulse sequence
[32,33]

eHð1ÞK ¼
1
T

Z T

0
dt eHKðtÞ ð37Þ

whereas the second-order AH contribution is a sum over all cross-
terms involving two interactions Kj and Kk:

eHð2ÞKj�Kk
¼ � i

2T

Z T

0
dt
Z t

0
dt0 eHKj

ðtÞ; eHKk
ðt0Þ

h i
ð38Þ

The order of interactions is important in Eq. (38), as eHð2ÞKj�Kk
andeHð2ÞKk�Kj

are not necessarily equal and generally both terms need to

be evaluated. An exception applies to ‘‘auto-correlation” terms,

i.e., when Kj ¼ Kk. They are for brevity denoted eHðnÞKj
. The third-order

AH involve sums over ordered triplets of interactions, Kj �Kk �Km,
for which either none, two (e.g., Kj �Kk �Kj), or all of the interac-
tions may be equal. Such a triplet is given by [32,33]

eHð3ÞKj�Kk�Km
¼ � 1

6T

Z T

0
dt
Z t

0
dt0
Z t0

0
dt00 eHKj

ðtÞ; eHKk
ðt0Þ; eHKm ðt00Þ

h ih i
þ eHKj

ðtÞ; eHKk
ðt0Þ

h i
; eHKm ðt00Þ

h i
ð39Þ

While formally Eq. (36) appears concise, it generally comprises a
sum over a large number of terms, where the summation is to be
taken over all combinations of interactions, including permutations
of their orders:

eH¼ X
Kj ;Kk ;Km ;...

eHð1ÞKj
þ eHð2ÞKj�Kk

þ eHð2ÞKk�Kj
þ eHð3ÞKj�Kj�Km

þ eHð3ÞKj�Kk�Km
þ... ð40Þ

The number of terms contributing to eHðnÞKj�Kk�... grows rapidly with n
and the number Nint of spin interactions considered.

A.3. Symmetrized average Hamiltonian terms

For a convenient book-keeping of the various terms contribut-
ing to each AH order, we define a ‘‘symmetrized” [40] nth-order
AH term involving q distinct interactions according to

eHðnÞðKj �Kk �Km � . . .Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q distinct K

¼
X

all permutations
of interactions

eHðnÞKj�Kk�Km�... ð41Þ

Each Hamiltonian term involves forming an n-tuple of interactions,
where q interactions out of the total number Nint are selected, with
the restriction that q 6 n. Next, the sum is carried out over all per-
mutations of ordered cross-terms, which ensures that all AH terms
between the q interactions are considered for the given perturba-
tion order. Once the symmetrized AH terms are formed, the order
of interactions specified within the parenthesis is unimportant, as



278 M. Edén, A.Y.H. Lo / Journal of Magnetic Resonance 200 (2009) 267–279
for instance, eHðnÞðKj�Kk�Km�...Þ ¼ eHðnÞðKm�Kj�Kk�...Þ. For example, for two dis-

tinct interactions Kj and Kk, the symmetrized second-order AH term
is [40]

eHð2ÞðKj�KkÞ ¼
eHð2ÞKj�Kk

þ eHð2ÞKk�Kj
: ð42Þ

A symmetrized third-order AH cross-term between three distinct
interactions is a sum over 3!=6 ‘‘ordered” terms,

eHð3ÞðKj�Kk�KmÞ ¼ eHð3ÞKj�Kk�Km
þ eHð3ÞKj�Km�Kk

þ eHð3ÞKk�Kj�Km
þ eHð3ÞKk�Km�Kj

þ eHð3ÞKm�Kj�Kk
þ eHð3ÞKm�Kk�Kj

ð43Þ

whereas that involving only two interactions (Kj and Kk) results
from three ordered terms:

eHð3ÞðKj�Kj�KkÞ
¼ eHð3ÞKj�Kj�Kk

þ eHð3ÞKj�Kk�Kj
þ eHð3ÞKk�Kj�Kj

: ð44Þ

Note that eHð3ÞðKj�Kj�KkÞ
, for which Kj appears twice, is distinct fromeHð3ÞðKj�Kk�KkÞ

(Kk appearing twice). If ‘‘auto-correlation” terms are con-

sidered, we employ the shorthand notation eHð3ÞKj
� eHð3ÞKj�Kj�Kj

¼eHð3ÞðKj�Kj�KjÞ; then for each AH order n, the symmetrized AH is identical

to the corresponding ‘‘ordered” AH term.
This symmetrized AH formulation presents an advantage of

clearly separating the various contributions to a particular AH or-
der and provides a convenient recipe for generating a given term
representing the interference between any specific combination
of spin interactions. The AH expressions found in most of the liter-
ature (e.g., see [33–36]) implies inserting Eq. (32)—i.e., the sum
over all interaction-frame Hamiltonians—into Eqs. (37)–(39). The
commutator expressions in Eqs. (38) and (39) then directly results
in all AH terms up to third order in Eq. (40). While simpler nota-
tion-wise and in principle straightforward to calculate, the analyt-
ical evaluations often becomes impractically complex. For
example, considering cross-terms between isotropic chemical
shifts (CS) and rf amplitude errors (RF), there are two distinct
third-order contributions: Hð3ÞðCS�CS�RFÞ and Hð3ÞðCS�RF�RFÞ. Eq. (44) pro-
vides a straightforward route to forming each of these based on
Eq. (39). On the other hand, if Eqs. (31), (32) and (39) are com-
bined and evaluated for a sum of chemical shift and rf error Ham-
iltonians, the net result is equivalent to separately forming four
symmetrized third-order AH terms: Hð3ÞCS , Hð3ÞRF , Hð3ÞðCS�CS�RFÞ and
Hð3ÞðCS�RF�RFÞ, of which the latter two originate from three ordered
AH terms [see Eq. (44)]. So notation aside, there is nothing funda-
mentally new with the present formulation of the AH terms.

Refs. [33–37,61] reviews various relationships between a given
rf pulse sequence and the transformation properties of the corre-
sponding interaction-frame Hamiltonian and their implications
for the resulting AH.
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jmr.2009.07.007.
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